INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2014-15

Statistics - III, Backpaper Examination, January 6, 2015 Marks are shown in square brackets. Total Marks: 50

1. Let $\mathbf{Y} \sim N_n(\mathbf{0}, \sigma^2 I_n)$. Find the conditional distribution of $\mathbf{Y}'\mathbf{Y}$ given $\mathbf{a}'\mathbf{Y} = 0$ where \mathbf{a} is a non-zero constant vector. [10]

2. Consider the model $\mathbf{Y} = \mathbf{X}\beta + \epsilon$, where $\mathbf{X}_{n \times p}$ has **1** as its first column and $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$.

(a) If $\hat{\beta}$ is the least squares estimator of β , show that $(\hat{\beta} - \beta)' \mathbf{X}' \mathbf{X} (\hat{\beta} - \beta)$ is distributed independently of the residual sum of squares.

(b) Consider the case when there is only one regressor, X_1 . When do we have independence of $\hat{\beta}_0$ and $\hat{\beta}_1$?

(c) Find the maximum likelihood estimator of σ^2 . Is it unbiased? [10]

3. Consider the following model:

 $y_1 = \theta + \gamma + \epsilon_1$ $y_2 = \theta + \phi + \epsilon_2$ $y_3 = 2\theta + \phi + \gamma + \epsilon_3$ $y_4 = \phi - \gamma + \epsilon_4,$

where ϵ_i are uncorrelated having mean 0 and variance σ^2 .

(a) Show that $\gamma - \phi$ is estimable. What is its BLUE?

(b) Find the residual sum of squares. What is its degrees of freedom? [10]

4. Let $\mathbf{X} = (X_1, X_2, X_3, X_4)'$ have mean **0** and covariance matrix

 $\sigma^2 \{(1-a^2)I_4 + a^2\mathbf{11'}\}$, for some 0 < |a| < 1 and where **1** is the vector with all elements equal to 1. Find the partial correlations, $\rho_{12.3}$ and $\rho_{12.34}$. [10]

5. What is a 2-factor 2-way ANOVA model? Derive its AVOVA table. Give an expression for the coefficient of determination for such a model. [10]